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Two-band density matrix theory: the effect of external fields 
on transition and transport processes 

F M Buflert and J Schlossed 
lnstitut HLr Theoretische Physik B, Rheinisch-Weslf&sck Technische Hochschule Aachen. 
D-52056 Aackn, Germany 

Received 10 May 1994 

Abstract. We present a derivation of the two-band density matrix dynamics which considers the 
effect of extemal fields on both the intraband drift motion in the six-dimensional configuration 
space mui the interband transitions. This includes in particular the contribution of the light 
field to the drift term of the interband density matrix which is, for example, responsible for 
the ’resonant’ Stark effect. A relation between the density matrix and electrodynamic quantities 
is established where OUT approach directly accounll for the decomposition into i n t e h d  and 
intraband polarization. The consideration of a stadc magnetic field without invoking the ‘Peierls 
substifution’ turns out to yield deviations from the usual formnlations in magneto-optics and 
bmsport theory. In the regime of quanhlm transpart we obtain a general expression for the 
quantum correction of the energy density which is valid for non-equilibrium conditions and 
arbitrary band smctllre and can be used for the derivation of quantum hydrodynamic equaIions. 

1. Introduction 

Non-linear optics and transport in modern semiconductor devices are characterized by a 
continuing diminution of the time and length scales involved. While the duration of pulses 
in ultrafast optical processes lies in the order of femtoseconds, transport is concemed with 
semiconductor devices that have reached the deep-submicron regime. This suggests that 
classical or semiclassical descriptions of experiments in these fields have to be replaced by 
a quantum mechanical treaeatment 111. Appropriate theoretical frameworks for studying those 
effects are non-equilibrium Green function theory [2-71 and density matrix theory [8-271. 
In this paper we adopt the density matrix approach because of its relative simplicity and 
more direct link with physical observables. 

An example in optics, which cannot be addressed semiclassically, is the ‘non-resonant’ 
dynamical (optical or AC) Stark effect [28,291, i.e. the modification of the excitonic 
absorption caused by an intense laser pump beam below the exciton resonance. This effect 
can be explained by the semiconductor Bloch equations @-I31 where in addition to the 
electron and hole distributions (inmaband density matrices) the electron-hole pair amplitude 
(interband density matrix) is an independent dynamic variable which is created due to the 
light field appearing in the source terms of the equations of motion. However, this approach 
is not sufficient for all situations in optics since the Hamiltonian, from which these equations 
are derived, includes neither spatially non-uniform situations nor drift contributions in 
momentum space. It is therefore not adapted to experiments like the emission of THz 
radiation from semiconductor heterostructures [30,3 11 or the ‘resonant’ Stark effect 132,331 
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where a pump beam is resonant between two exciton sublevel states. The former effect is 
associated with spatial inhomogeneity since it is caused by charge oscillations and thus the 
polarization is related to the electron and hole distributions [23,24] and not to the electron- 
bole pair amplitude describing interband transitions. The ‘resonant’ Stark effect originates 
from the contribution of the light field to the drift term of the electron-hole pair amplitude, 
which was first introduced in terms of the vector potential [16-19] and later replaced ‘by 
hand’ with a hansverse electric fieId [19-211. It has to be stressed that a crucial point in 
this context is the fact that the relation between the dynamic variables and electrodynamic 
quantities depends on the gauge chosen and that equivalent gauges can lead to different 
results when using approximations [34]. Similar problems arise when considering a static 
magnetic field [22], namely the ‘Peierls substitution’ which has become the subject of 
serious criticism [35]. 

Semiclassical transport in the field of semiconductor device simulation is described 
by the Boltvnann transport equations [36,37] where the electron-hole pair amplitude is 
eliminated as an independent variable. On the other hand, the classical hydrodynamic model 
consisting of balance equations for charge density, conduction current density and energy 
density is also used [38-40] since its solution requires much less computation time. In view 
of the increasing miniaturization of semiconductor devices quantum mechanical extensions 
of these models are under discussion. In the Boltzmann equations higher derivatives of 
the scalar potential have been considered [ I ,  14,27,41-43], while in the hydrodynamic 
model a ‘quantum potential‘ has been introduced for which different expressions are being 
used [27,42,43] and the first applications on the device level have been performed [44,45]. 
These approaches assume a parabolic bandstructure and in the hydrodynamic case often 
refer to special shapes of the distibution functions. However, non-parabolic bandstructures 
are important in hot-electron bansport [39,40] so that formulations are desirable which relax 
the restriction to parabolic bands and particular shapes of the distribution functions. 

The aim of this work is to present a consistent derivation of the density mahix dynamics 
that incorporates all the interband and intraband processes induced by external fields in the 
different situations of optics and transport as described above. This requires a decomposition 
of the effect of the external fields into drift and transition contributions which can be achieved 
in a site representation of the second-quantized Hamiltonian by making use of localization 
properties of the Wannier functions. The other focus is to establish a relation between the 
dynamic variables and physical quantities of interest which will be based on transforming 
the equations of motion into a version where the expression for the resulting conduction 
current density is gauge independent. In the case of a light field this is accomplished via a 
gauge transformation as long as the magnetic component of the light can be neglected. In 
the presence of a strong static magnetic field an additional transformation of the variables 
has to be applied which removes the explicit dependence of the conduction current density 
on the magnetic field. Interband polarization and magnetization are then identified via the 
expectation value of the corresponding Hamiltonian. The expectation value also yields 
directly the general expression for the quantum correction of the energy density and permits 
us in sufficiently localized systems to rewrite the conduction current density in terms of an 
intraband polarization. 

For simplicity we consider only a two-band system and assume in the main part of 
this work a parabolic band structure. Only in the section on quantum transport are no 
approximations imposed on the band structure. The Coulomb interaction is omitted since 
the subject of this paper is the incorporation of external fields. The paper is organized 
as follows. In section 2 the Hamiltonian is set up in an appropriate form using a gauge 
transformation as well as localization properties of the Wannier functions. In section 3 the 
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equations of motion for the density matrix in the presence of a light field and a longitudinal 
electric field are derived. In section 4 we relate the dynamic variables to macroscopic 
quantities of interest and in section 5 a static and uniform magnetic field is incorporated 
into the density matrix dynamics. Finally, in section 6 the regime of quantum transport is 
discussed and in section 7 some conclusions are drawn. 

2. Hamiltonian 

The second-quantized Hamiltonian describing a two-band semiconductor under the intluence 
of external fields in the electron-hole picture is 

(2.la) 

(2.lc) 

where n denotes the band index (characterizing the valence band (n = U) or the conduction 
band (n = c)). mo the free electron mass, e > 0 the magnitude of the elementary charge, 
V the volume of the crystal and V ( r )  the periodic potential of the lattice; wn(r - Rj) 

stands for the Wannier functions. They are related to the Bloch functions f rnk(r) ,  which 
are eigenstates of the singleparticle Hamiltonian 

h2 
h 0  

ho = --A + U ( T )  

with eigenvalues e,(k), through the transformation 

Here, N is the number of unit cells in the crystal and the summation over k is confined to 
the first Brillouin zone BZ. The creation and annihilation operators of electrons (holes) at 

We suppose that A' and 9' are obtained from potentials in the Coulomb gauge 
site Rj are given by c j (d i )  t i  and cj(dj), respectively. 

(V . A = 0)  via the gauge transformation (see the appendix) 

A'(r, t )  = A(T, t )  + V X ( T ,  t )  

Q ' ( r , f ) = Q ( r , t ) - - x ( r , t )  

(2.44 

(2.4b) 
a 
at 

with the gauge function 

x ( r , t ) = -  d u r . A ( u r , r )  I' 
as given by Fiutak [46] and used by other authors [47,48] which goes back to the 
transformation of Goppert-Mayer [491. This yields for the new potentials [46,471 

A'(T, t )  = du B(ur, t )  x UT EJ fB(0, t )  x T (2.64 

(2.6b) 

I' 
9'(r, t )  = Q(r, t )  - du T. El(ur,  t )  w Q(r, t )  - r . E,(O, t )  I '  
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where we have applied the long-wavelength approximation to the magnetic field B and the 
transverse electric field EL = -aA/at by approximating them in the integral with their 
values at the origin. The consideration of a space-dependent light field would require us 
to start with its explicit spatial dependence (e.g. a plane wave) and then to perform the 
integration over U in (2.6). 

We now calculate the matrix elements (2.lb) of the singleparticle Hamiltonian (2.1~) 
involving the electric field. For this we (i) assume that the integration in (2.lb) can be 
restricted to an overlap region due to localization properties of the Wannier functions [SO] 
and (ii) relate the position vector in a dipole matrix element to the centre = (&+Rj)/2 
of the overlap region. The assumption of the overlap region being of the order of a unit 
cell is supported by the experimental value of 7.88eA for the dipole matrix element in 
GaAs [29] to be compared with the corresponding lattice constant of 5.65 A. For simplicity 
we concentrate on the limiting case where the integration in (2.lb) is only over a single 
unit cell and terms with Wannier functions centred around different sites vanish. Hence 

F M Bujer and J Schlisser 

n 

- EL(O, t )  . (T - Ri)lwn,(r - Ri) d3r 
= - eS.,JWRi, t )  - Ei(0,t) . RJ + eT.,d . [Ell(&. t )  +EL(O, 01 (2.7) 

expanding in the last step the scalar potential @ to first order about R,. and changing the 
variable of integration to T - Rj. Here, we have introduced the longitudinal electric field 
Ell = -VO and the dipole matrix element 

~ : ( T ) T W . * ( ~ )  d3r (2.8) d - eTn,", = -e 

Overlap regions exceeding a single unit cell can be taken into account for example via a 
'smeared-out' dipole -e?",,,,(& - Rj) [14]. The matrix element involving the magnetic 
field is obtained by applying an analogous procedure, i.e. adding and subtracting the overlap 
centre R , j  as well as restricting, if necessary, the integration to the overlap region, and using 
the definitions 

h 
pn,", = s, w : ( ~ ) ~ V w , d r ) d ~ r  (2.10) 

An,", = s, W;(T)(T x ;V)wn,(r)d3r (2.11) 

(r').,", = w;(r)(xZ + y z ) w , , , ( ~ ) d 3 r  (2.12) 

where the magnetic field is taken along the z axis. Finally, the remaining ma& element 
of the single-particle Hamiltonian ho given in (2.2) results from replacing the Wannier 
functions through the Bloch functions via (2.3). The total matrix element (2.lb) is then 

hnj,,,nj = h;i,",j + h$,nrj + h,&, (2.13~) 

h&j = - Em(k)eik.(R-R,) (2.13b) 
kEBZ 
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assuming r,, to cancel due to selection rules and neglecting ern,"< x B against pn,n, as well 
as eB(r2).,., against &,"S. Without spin-orbit interaction only &,, has to be extended to 
Jn,n = LnSn + S,," when including the spin. 

The field-independent matrix element (2.13b) allows for hopping between different sites, 
the first term in (2.13~) will lead to the contribution of the electric field to the drift motion 
in the six-dimensional configuration space, while the other term yields transition processes 
between valence and conduction band. A similar decomposition as in (2.13~) holds for the 
magnetic contributions. 

3. Equations of motion 

In this section we derive the equations of motion for the expectation values of pairs of 
creation and annihilation operators which are usually summarized in the density matrix 

e 
h 0  

+ (1 - Jn,n,) --B(O, t )  . (& x ~ n . n '  + & , n , ) & , j  

Here Cij = (cicj) and Di, = (d!dj) denote the electron and hole distributions, respectively, 
whereas the electron-hole pair amplitude is given by Yij = (dicj). Setting up the Heisenberg 
equation of motion iFzdA/dt = [A, HI for an operator A and then taking the expectation 
value (A) = Tr@A) with the statistical operator p yields for the elements of the density 
matrix (3.1) 

(3.26) 

(3.2~) 

The next step is the introduction of densities as proposed by Stahl and Balslev [14] in the 
spirit of an interpolation scheme: 

(3.3a) 

(3.3b) 

(3.3c) 
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which are defined on the spatial continuum with the &like sampling function A being 
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(3.4) 

The corresponding equations of motion are then transformed by introducing relative 
I = T Z  - T I  and centre R = (TZ + q ) / 2  coordinates. As is indicated, for example, 
by the electron distribution in thermal equilibrium C ~ ( I ) ,  which is a Gaussian with a 
width given by the thermal wavelength = h(m,kBT)-'/* where k~ and T denote the 
Boltzmann constant and the lattice temperature, respectively (Ah = 64.7A in GaAs for 
T = 3 0 0 K ) .  the density matrices tend to 0 as x + M. Hence, one can approximate the 
scalar potential according to 

@(R f ;I, t )  w @(E, t )  f ;VIP(E, t )  . x (3.5) 

if the length scale of its spatial variation is sufficiently large (for extensions see section 6). 
Furthermore, we restrict ourselves in the remaining part of this section to the case of a 
longitudinal elechic field and a light field. It is then possible to neglect the magnetic 
field since the relation between the amplitudes B = E J c  leads to negligible magnetic 
contributions to both the drift motion (the Lorentz force is v / c  times the elechic force) 
and the transition processes (terms associated with magnetic dipoles are small compared 
to the electric counterparts). The resulting equations in the effective mass approximation 
(E&) m -h2kz/2m, with m, > 0, E&) Eg + hzk2/2m, with Eg denoting the band 

( - i h i + E g + Q v c  Y ( R ,  I) = -er:,.[EII(R, t)+El(O, ~)I[SB(I)-C(R, I ) - D ( R ,  -I11 

gap) are 

(3.64 

1 
ih + -Y(R, Z )  

-ihz + Qcc C ( R ,  I) = - e [ r L Y * ( R ,  -z) - r , ,Y (R ,  I)]. [EII(R, t )  + El(0, t) l  

(3.6b) 

( a I r z  ih 

( a 1 "  ih 

+ - [ C ( R ,  Z) - Cq(z)l 

-ihz + a,, D(R, I) = -e[r:cY'(R, I) - r V c Y ( R ,  -111. [EII(R, t )  +EL(O, 01 

( 3 . 6 ~ )  

where the band-limited 6 function is given by &(I) = V-I CkEBZexp(ik. I). In view of 
the constitutive relations to be derived as limiting cases in the next section phenomenological 
relaxation times have been added to account for irreversible processes. The definitions of 
the drift operators are 

+ -[D(R, I) - DYZ)l 
TI 

(3.7b) 

(3.74 
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with ,U-' = m;' +in;' being the reduced mass. Note that there are also cases where it 
can be advantageous to use in the equation for Y the centre-of-mass instead of the centre- 
coordinate [141. In the limiting case where Y, C and D do not depend on R and x 
(effective masses -+ 03 and relative coordinate + O), i.e. when the drift operators can be 
neglected, these equations represent the optical Bloch equations describing the dynamics of 
independent two-level atoms [51]. 

In order to establish the relation to the k-space density matrix formulation a Fourier 
aansform with respect to the relative coordinate I has to be applied which has a certain 
analogy to the Wigner transformation [14,41] 

(3.8~) 2ik.R p ( R ,  k) = Y (R, d3x = (d-k+k' Ck+!!)e 
k'qBZ(k)nBZ(-k)) 

(3.8b) 

where BZ(k) is the Brillouin zone centred around k and creation and annihilation operators 
with respect to Bloch functions have been introduced (Ck = c,,p, dk  = c+ 

The equations of motion resulting from the Fourier transform are 
".-d. 

where the source terms are given by 

The optical Bloch equations are again obtained in the case where p ,  fc and fv do not depend 
on R and I C .  Neglecting only the space dependence yields the density matrix dynamics in 
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the k-space formulation as often used in optics (after inclusion of the Coulomb interaction), 
i.e. apart from the drift terms ff E . Vk the usual semiconductor Bloch equations. On the 
other hand, the equations for fc and f v  coincide in the absence of the source terms with the 
Boltmnann transport equations in the relaxation time approximation. 

4. Electrodynamic quantities 

In this section we establish a relation between the dynamic variables, i.e. the eleceon-hole 
pair amplitude and the electron and hole distributions, and macroscopic quantities of interest 
such as the interband polarization and the conduction current density. Our scheme will be 
based on an identification of the expectation value of the Hamiltonian with the classical 
Hamiltonian in the electric dipole approximation. For that, we use the orthonormality 
relation of the sampling functions (3.4) 

F M Bujer and J Schlosser 

1 A*@ - &)A@- Rj)d3R = &,j 

(If) = T r ( p H )  = i 7 i ( R ) d 3 R  (4.2) 

(4.1) 

in order to extend the summation in (?..la) and thus are able to rewrite the expectation value 
of the Hamiltonian 

as an integral over an energy density which is given in terms of the dynamic variables (3.3) 
and (3.8). respectively, and can be arranged in the form 

Z(R) = W(R) + e(R)[Q(R, 0 - EL(O, 0 . RI - Cnler(R). [EII(R, 0 f EL(O, 01 (4.3) 

where the time dependence of the densities is suppressed. In the following we give the 
definitions of the individual terms in (4.3) and interpret them. The first term 

(4.4) 

represents, apart from the band gap, the kinetic energy density of electrons and holes. It 
can be seen that this energy involves a quantum mechanical correction term, a fact which 
was first found by Wigner 1411 for the case of thermodynamic equilibrium. Our approach 
for the quasi-particles in a semiconductor, however, holds under arbitrary non-equilibrium 
conditions, since we did not need to invoke any particular shape of the electron and hole 
distributions. The quantum correction will be discussed in more detail in section 6. Here, 
we only consider briefly the limiting case of thermal equilibrium in a non-uniform situation 
described for non-degenerate electrons by the Maxwellian 



Two-band densify matrix theory 7453 

where /L = Eg/2+ 3k~T[h(m,/m,)]/4 denotes the chemical potential. The energy density 
of the electrons then becomes 

with the electron density given by 

n,(R) = (w3 f,(R, k)d3k. s,, 
This shows that the quantum correction for the mean energy, W,(R)/n,(R), vanishes in 
the limit of high temperatures. 

The last term in (4.3) induces via the electric field interband transitions between valence 
and conduction bands, which can be described by the interband polarization 

E.,(R) = -er,,Y(R,O) - er:,Y*(R, 0) 
1 

= - \ [-er,p(R, k) - er:,p*(R, k)Jd3k. 
( 2 4 3  BZ 

(4.7) 

On the other hand. the second term in (4.3) accounts for the intraband drift motion. In 
fact, differentiating the charge density 

(4.8) 

with respect to time and using the equations of motion (3.6b) and (3.6~) yields in the 
absence of relaxation processes the continuity equation 

a 
-e(R) + VR j ( R )  = 0 (4.9) 
at 

which permits us to identify the conduction current density describing transport processes 
as 

e h  e h  
m, I m, I 

j ( R )  =jc (R)  +j,(R) = ---TV=C(R,Z)LO+ --TV=D(R.Z)I=S 

(4.10) 

It has to be stressed that the expression for the conduction current density comprises in 
general explicitly the vector potential, as does the probability current density in ordinary 
quantum mechanics. Only the choice of our gauge (see (2.5)) removes the explicit 
dependence on the vector potential from the expression (4.10) as long as the magnetic 
field can be neglected. 

It has thus been possible to divide the electronic dynamics into band-to-band transitions 
given by the interband polarization and the drift motion described through the conduction 
current density. This division is further emphasized by the constitutive relations, which 
can be derived from the equations of motion for the density matrix. Taking in the limit of 
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infinite large effective masses the second derivative of the polarization (4.7) with respect to 
time and using (3.6aH3.6~) leads to 

F M Bufler and J Schl6sser 

(4.11) 

with wg = E,/h, n = 1/&1l and E = EL + Ell. Here, the electron and hole densities 
have been neglected against n, and the dipole matrix element is assumed to be real. 
Equation (4.1 l), which is usually introduced within the picture of ‘bound’ charges, represents 
the constitutive relation for the polarization (after inclusion of the induced electric field) 
permitting us to calculate the susceptibility x(w)  defined through &(w) = eox(o)E(w).  
On the other hand, the first derivative with respect to lime of the conduction current densities 
(4.10) of electrons and holes yields in spatially homogeneous systems with the help of (3.6b) 
and (3.6~)  the Drude equations 

(4.12) 

(4.13) 

where n, and n, denote the electron and hole densities, respectively, and band-to-band 
transitions have been neglected. These equations, which correspond in the framework of 
classical electrodynamics to ‘free’ charges, determine the frequency-dependent conductivity 
a ( w )  given by j ( w )  = u(o)$(w). Note that the electric field in (4.11) stems from the 
source term in the equations of motion, whereas in (4.12) and (4.13) it comes from the drift 
term. It should be stressed as well that even in the simplest case of a static electric field 
(Q = -&. R, A E 0) the scheme given in (2.7), i.e. using localization properties of 
the Wannier functions to restrict integrations to an overIap region and relating the position 
vector in the dipole matrix element to the cenue of the overlap region, is necessary within 
OUT approach to obtain as the limiting case Ohm’s law j ,  = q E  with a0 = e2r,n,/m,. 

Finally, we give for the case of a sufficiently localized system an equivalent formulation 
of the energy density (4.3). Performing another gauge Uansfonnation via ,f = l’ Q(0, t’) dt‘ 
and approximating the longitudinal electric field by its value at the origin (compare (2.6)) 
results in 

fi(R) = W(R) - [P;nm(R) + P;mdR)I *E(O, t) (4.14) 

with 

P,,(R) = -eRC(R, 0) + eRD(R, 0) = - 1 
[-eRf,(R, k) + eRf,(R, I C ) ]  d3k. 

(4.15) 
( W 3  J,, 

This intraband polarization is related to the conduction current density according to 

(4.16) 

as can be shown with the help of the continuity equation (4.9) and an integration by parts, 
if there is no current crossing the surface of the sample. 
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5. Static magnetic field 

This section is devoted to the inclusion of a static and uniform magnetic field BO into the 
equations of motion. The magnetic field is considered to be so strong that it is no longer 
justified to neglect the magnetic contributions. The corresponding equations of motion are 
obtained by the same procedure which led in section 2 to (3.6). However, the expression 
for the conduction current density resulting from the continuity equation (4.9) now includes 
explicitly the magnetic field. In order to obtain again the field-independent expression (4.10) 
one has to apply the transformation 

(5.la) 
(5.lb) 
( 5 . 1 ~ )  

This kind of transformation was first given by Lamb [52] for two-particle problems in the 
Schriidinger picture (using the centre-of-mass instead of the centre coordinate) and later 
used by other authors [53,54]. The corresponding variables in the k-space formulation are 
again obtained by the transformation (3.8) and the total energy density (compare (4.3)) in 
the new variables is 

Gmr(R) = %(R) - M ( R )  *Bo + Xdi.(R) (5.2) 

enabling the identification of the magnetization as 

M ( R )  = ---(Lcck(R,O) - L,b(R.O) e 

2mo 
+ [ R  x P,, + LIf (R,  0) + [ R  x P:, + L & I ~ ( R ,  0)) 

+ x P, + -Lli%R9 + [ R  x P:, + L:,IT(R, WI) d3k. (5.3) 

Here 7i,jia(R) denotes the diamagnetic contribution, which is quadratic in BO. Note that it 
is due to the transformation (5.1) that the expression for the magnetization does not include 
the group velocity defined in (2.9). 

Instead of listing the complete equations of motion following from (2.13a) and (5.1) 
we concentrate on the cases that are relevant either for transport theory or for optics. In the 
former case one can often neglect the electron-hole pair amplitude restricting the dynamics 
to the Boltzmann transport equations. In the presence of the magnetic field they are 

(5.4) 
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Note that without the transformation (5.1) there would be a factor 112 in front of the Lorentz 
force as well as additional terms leading in particular to a conduction current density that 
depends explicitly on the magnetic field. As a result, we have found in addition to the usual 
drift term a contribution that is quadratic in the magnetic field and cancels in the limit of 
free particles (m, + mo, m, -mo). The equation for the holes is obtained from that 
for the electrons through the substitution m, -+ -m, and k -+ -k. If there were not the 
term quadratic in BO (and the band-to-band transitions already neglected), this would be 
equivalent to the substitution m, + m, and -e + +e thus permitting the interpretation of 
holes as positively charged particles. 

In contrast, the space dependence can often be neglected in the field of optics. When 
dealing with a magnetic field it is then advantageous not to perform the Fourier transform 
according to (3.8). but to use the z-space density matrix formulation. The resulting equations 
in this case (neglecting eBi(r2)../8mo against 3(Bo x x)'/32p in view of an expansion of 
the density matrix in terms of exciton wavefunctions (compare (2.13a)) and taking R = 0 
as the point of reference) are 

F M Bufler and J Schltisser 

e i b -  -- X [p:, i '*(~) + pvcI?(-~)I  * Bo + - [ D ( z )  - Dq(z)l ( 5 . 6 ~ )  
4m0 TI 

with the total electric field E ( f )  = Eil(0, t )  + El(0, t )  and the drift operators 

e h 
me I 

8, = e E ( t ) .  a + -Bo. z x :V, (5.7b) 

(5.74 

Note that L, and Lw in (5.6a) are the only terms to be modified according to Ja = 
L, + S, and J,, = L, + S,,, respectively, when including the spin. This contribution 
leads to a band-splining which depends on the strength of the magnetic field. A similar 
effect occurs in the drift operators (5.7) after projecting the density matrix onto exciton 
wavefunctions. For a realistic description of the dynamics these equations have to be 
extended by the Coulomb interaction treated in the literature in the timedependent Hartree- 
Fock approximation [8,11,16,181 or beyond [25,26].  In magneto-optics this has already 
been done within the density matrix approach by Stafford and co-workers [22].  However, 
they omitted the magnetic contributions corresponding to the Lorentz force in the drift 
operators of electrons (5.7b) and holes ( 5 . 7 ~ )  as well as the terms associated with a magnetic 

e h 
mv 1 

8," = -eE(r) .z - - Bo. x x TVZ. 
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dipole on the right-hand sides of (5.6). In addition, the prefactor of the term, which is 
quadratic in BO, differs from ours in (5.7a) (note that there would be still a difference 
when using the centre-of-mass instead of the centre coordinate within our approach). This 
difference is supported by former investigations showing that the ‘Peierls substitution’, i.e. 
the use of effective operators c,,(-iV + e(& x r)/ut). involves an error proportional to 
33; [551. Doubts about the validity of the ‘Peierls substitution’ have also been confirmed 
recently [35]. Hence, our approach suggests that one should expand the density matrix in 
terms of exciton wavefunctions instead of projecting it onto Landau orbitals. 

6. Quanhm transport 

In this section we concentrate on the intraband drift motion in the presence of a scalar 
potential and therefore neglect interband transitions described by the electron-hole pair 
amplitude. On the other hand, we will make no simplifying assumptions about the band 
structure and consider the full space dependence of the scalar potential. The equations of 
motion can be found along the same lines as developed in section 3. We only do not apply 
the effective-mass approximation and retain the complete expansion of the scalar potential 
in (3.5). The resulting collisionless quantum Boltzmann transport equations are 

+ e [ Q ( R +  4iVk) - Q(R - iiVk)l] f,(R, k) = 0 (6.lb) 

where we have introduced the hole band structure via &(k) = -cv(k) and suppressed the 
time dependence of the scalar potential and the distribution functions. Expressions of the 
form f(z f iiV,) are understood to be expanded into a Taylor series according to 

(6.2) 
The corresponding expression for the expectation value of the Hamiltonian (compare (4.2) 
and (4.3)) is 

(H) = Tr@H) = [ W ( R )  + e(R)@(R)1d3R (6.3) 

1 
f(e i +ivy) = f(e) f f iVzf(z) .  V, i . . . . 

s, 
( k ) 3  L Z  

with the energy density 

W(R) = Wc(R)  + W v ( R )  = - 
1 I[€& + iiV.) + cE(k - i i v ~ ) ] f ~ ( R ,  k) d3k 

+ /” i[Zv(k + ;iVR) 4- L(k  - iiV,)]fv(R, k)d3k. (6.4) 

The equations of motion (6.1) yield again the continuity equation (4.9) for the charge density 
e (R)  defined in (4.8). However, the conduction current density is now given by 

~3 BZ 
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where e,@) = V,Zv(k)fi denotes the hole group velocity. The equations of motion (6.1) 
together with the expressions for energy density (6.4). charge density (4.8) and conduction 
current density (6.5) represent a complete description of collisionless quantum transport. 

In contrast, concrete applications require tractable formulations that include only the 
leading quantum corrections. One way of doing this is to introduce the classical momenm 
p = hk and to retain only terms with the lowest power of h that do not cancel. This 
correction turns out to be of the order hZ both for the equations of motion and for the 
energy and conduction current density. Another possibility would be to classify according 
to the derivatives of the given functions E&). ZJc) and Q(R). The consideration of 
zero- and first-order derivatives with respect to k and Q respectively, coincides with the 
formulations in classical transport theory. However, as a result of keeping the second 
derivatives in  the next step, one finds that only the energy density involves a quantum 
mechanical correction term. Even-order derivatives of cC(k), &(k) and Q(R) cancel in the 
equations of motion as well as in the expression for the conduction current density. This 
second approach leads to the formulations presented in sections 3 and 4. 

Once a scheme of approximation has been chosen the corresponding equations of motion, 
together with the expressions for energy and conduction current density, can serve as a 
starting point for the derivation of quantum hydrodynamic equations for electrons and holes. 

7. Conclusions 

We have presented a derivation of the two-band density mahix dynamics that goes 
beyond the usual semiconductor Bloch equations and the semiclassical Boltzmann transport 
equations. Our approach is based on localization properties of the Wannier functions 
which enables the decomposition of the effect of external fields into transition and transport 
contributions. The main applications beyond the standard theories concem the 'resonant' 
Stark effect, which originates from the light field in the drift term of the eleclmn-hole 
pair amplitude, the emission of THz radiation from semiconductor heterostructures, which 
is related to the intraband polarization, and quantum transport, where our approach yields 
a general expression for the quantum correction of the energy density thus representing a 
rigorous basis for the derivation of quantum hydrodynamic equations. The inclusion of a 
static magnetic field has led to additional terms so far not considered in the field of magneto- 
optics and semiclassical transport theory. In concrete cases the simplified equations given 
in this paper have to be adapted to the situation under consideration (e.g. a heteroshucture) 
and extended by generalization to a multi-band model including the spin as well as the 
induced transverse fields and the Coulomb interaction. 
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Appendix 

In this appendix we show briefly how to pass within the formalism employed in this paper 
from a semiclassical Hamiltonian in the original gauge to the corresponding Hamiltonian in 
another gauge. 

The system under consideration consists of NO electrons interacting with a classical 
external electromagnetic field and subjected to the inffuence of a potential U(r). It can be 
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described by the Hamiltonian 

Under a canonical transformation 

the Hamiltonian H ( t )  and the No-electron state satisfying the Schriidinger equation 
ihdl+(t))/dt = H ( t ) l + ( t ) )  transform to r46-481 

H’(t)  = T ( t ) ~ ( t ) f l ( t )  + STfl(t) (A4) 

I+’(r)) = 7@)l$(t)) (A5) 

where H ‘ ( t )  tums out to be again of the form as given by (Al) and (AZ), but in terms of 
potentials A‘ and 9‘ which are related to A and 9 via the usual gauge transformation (2.4). 

Rewriting the Hamiltonian (A4) in the occupation number representation (second 
quantization) then yields 

the sums running over a complete set ( [ev) 1 of oneparticle functions. Finally, we pass 
over to the Hamiltonian in the Heisenberg picture $( t )  = U ~ ( t ,  to)H’(t)U‘(t, to) with the 
corresponding time evolution operator U’@, to) given as the solution of 2 dU‘(t, to)/dt = 
H’(t)U‘(t, to). Hence 

$0) = C(~”lh‘(t)l~~)~~(t)~~(t) (A7) 

The model used in this paper is then specified by using (2.5) in the canonical transformation 
(A3), choosing the Wannier functions as the complete set of oneparticle functions and as a 
last step restricting in the two-band approximation the summation over the band indices in 
(A7) to one valence band and one conduction band. In order to keep the notation as simple 
as possible we have dropped, in the Hamiltonian (2 .1~) .  the primes indicating the gauge 
and suppressed the time dependence of the Heisenberg operators. 
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